Improving Genetic Algorithm with Fine-Tuned Crossover and Scaled Architecture
نویسندگان
چکیده
منابع مشابه
A New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm
Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms ...
متن کاملFine-scaled human genetic structure revealed by SNP microarrays.
We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent w...
متن کاملA Hybrid Fine-Tuned Multi-Objective Memetic Algorithm
In this paper, we propose a hybrid fine-tuned multiobjective memetic algorithm hybridizing different solution fitness evaluation methods for global exploitation and exploration. To search across all regions in objective space, the algorithm uses a widely diversified set of weights at each generation, and employs a simulated annealing to optimize each utility function. For broader exploration, a...
متن کاملA Genetic Algorithm with Fuzzy Crossover Operator and Probability
The performance of a genetic algorithm is dependent on the genetic operators, in general, and on the type of crossover operator, in particular. The population diversity is usually used as the performance measure for the premature convergence. In this paper, a fuzzy genetic algorithm is proposed for solving binary encoded combinatorial optimization problems. A new crossover operator and probabil...
متن کاملA quantum genetic algorithm with quantum crossover and mutation operations
In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2016
ISSN: 2314-4629,2314-4785
DOI: 10.1155/2016/4015845